

ELSEVIER

IL FARMACO

Il Farmaco 53 (1998) 737–740

Synthesis, analysis and in vitro antibacterial activity of new metal complexes of sulbactam

Irena P. Kostova ^a, Lubomir S. Changov ^{b,*}, Emma E. Keuleyan ^c, Rayna T. Gergova ^c, Ilia I. Manolov ^d

^a Department of Chemistry, Faculty of Pharmacy, Medical University, 2 Dunav St., Sofia 1000, Bulgaria

^b Chemical Pharmaceutical Research Institute, 3 Kliment Ohridsky Blvd., Sofia 1756, Bulgaria

^c Chair of Microbiology, Medical University, 2 Zdrave St., Sofia 1431, Bulgaria

^d Department of Industrial Pharmacy, Faculty of Pharmacy, Medical University, 2 Dunav St., Sofia 1000, Bulgaria

Received 25 May 1998; accepted 16 November 1998

Abstract

Complexes of copper(II), nickel(II) and iron(III) with β -lactamase inhibitor sulbactam have been synthesized, characterized and identified by elemental analysis, IR and ¹H NMR spectroscopy. These complexes have been then tested for their in vitro antibacterial activity in combination with ampicillin against various bacterial species. © 1998 Elsevier Science S.A. All rights reserved.

Keywords: β -Lactamase inhibitor; Sulbactam; Ampicillin; Antibacterial activity; Metal complexes of sulbactam

1. Introduction

Nowadays, β -lactams are the most widely used antibiotics [1]. The most widespread mechanism of bacterial resistance to β -lactam antimicrobials is the expression of β -lactamases that degrade these antibiotics [2]. One way of counteracting resistance to β -lactam antibiotics is to use them in combination with a β -lactamase inhibitor [3–6].

Sulbactam, a penicillanic acid sulfone (Fig. 1), has been characterized as a competitive or non-competitive β -lactamase inhibitor which has relatively little intrinsic antibacterial activity but which has been shown to extend the in vitro spectrum of β -lactam antibiotics

substantially against resistant bacteria [7]. Fixed combinations of sulbactam with ampicillin have been successfully introduced into clinical use. When ampicillin and sulbactam are combined, sulbactam acts as inhibitor of the action of β -lactamases, allowing ampicillin to act by itself in the usual fashion without interference.

It would then be interesting to examine whether sulbactam will retain its action when combined with ampicillin in the form of metal complexes. Some articles appeared recently, dealing with metal complexes of β -lactam antibiotics [8–11]. We studied the formation of metal complexes of sulbactam with a number of chelating agents which are known to have a biological function.

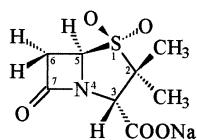


Fig. 1. Structure of sulbactam.

* Corresponding author. Tel.: +359-2-759086; fax: +359-2-974 3759.

E-mail address: emilia@adm1.uctm.acad.bg (L.S. Changov)

2. Chemistry

In this paper synthesis and coordinating properties of copper(II), nickel(II) and iron(III) complexes of sulbactam are reported, and the relative changes that occur in its action upon complexation are explored.

Sulbactam contains electron-donor atoms such as nitrogen and oxygen, which easily coordinate with

metal ions to form complexes. Its molecule is expected to act as a bidentate ligand occupying four coordination sites, while the remaining two are filled by water molecules thus giving octahedral complexes. The evidence concerning the structure and coordinating properties of the prepared complexes was based on spectroscopic and elemental analysis data.

3. Chemical experimental

The metal salts used for preparing the complexes were Merck products, p.a. grade: Cu(NO₃)₂ · 6H₂O, Ni(NO₃)₂ · 6H₂O and Fe(NO₃)₃ · 9H₂O. Sulbactam sodium salt was a gift from Antibiotic Co., Razgrad, Bulgaria.

The complexes were synthesized by mixing water solutions of the corresponding copper(II), nickel(II) and iron(III) salts with the water solutions of sulbactam sodium salts in amounts equal to metal:ligand molar ratio of 1:2. The reaction mixture was stirred at 25°C for 1 h. Then ethanol was added and the obtained precipitates were filtered and dried in a desiccator to constant weight.

The C, H and N contents were determined by elemental analysis. The copper, nickel and iron ions were determined complexometrically after mineralization

and the sodium ions by means of flame photometry.

The water content of the synthesized compounds was determined using a Metrohm Herizall E55 Karl Fisher titrator.

IR spectra (Nujol) were recorded on a Shimadzu FTIR-8101M spectrometer.

¹H NMR spectra of sulbactam and its complexes were recorded at room temperature on a Brucker WP 100 (100 MHz) spectrometer in D₂O. Chemical shifts are given in ppm.

4. Antibacterial activity

The in vitro antimicrobial activity of the newly synthesized metal complexes of sulbactam in combination with ampicillin was compared with that of ampicillin combined with uncomplexed sulbactam against a number of clinically important and control strains.

4.1. Microorganisms

During 1997, 42 clinically important strains, belonging to eight different bacterial species, have been isolated from respiratory tract specimens, urogenital tract specimens, blood culture and feces (strains are listed in Tables 2 and 3). Most of them have been selected

Table 1
Elemental analysis data for the synthesized metal complexes of sulbactam

Complex	Found (Calc.) (%)					
	C	H	N	H ₂ O	Na	Metal
Cu(C ₈ H ₁₀ NSO ₅ Na) ₂ · 2H ₂ O	31.25 (31.53)	4.05 (3.94)	4.72 (4.59)	6.17 (5.91)	7.32 (7.55)	10.11 (10.34)
Ni(C ₈ H ₁₀ NSO ₅ Na) ₂ · 2H ₂ O	32.57 (32.81)	4.27 (4.10)	4.95 (4.78)	6.28 (6.15)	7.43 (7.86)	7.03 (6.68)
Fe(C ₈ H ₁₀ NSO ₅ Na) ₂ · 2H ₂ O	31.58 (31.89)	4.16 (3.98)	5.01 (4.65)	6.12 (5.98)	7.38 (7.64)	9.64 (9.27)

Table 2
Minimal inhibitory concentrations (MICs) in mg/l of ampicillin, sulbactam and their combinations against 42 clinical and three control strains

Microorganisms	n ^a	Ampicillin		Sulbactam		Ampicillin + sulbactam	
		MIC ranges	MIC ₉₀ ^b	MIC ranges	MIC ₉₀	MIC ranges	MIC ₉₀
<i>Enterococcus faecalis</i>	7	1–4	2.7	64–>128	>128	1–2	1.5
<i>Moraxella catarrhalis</i>	13	<0.06–2	1.7	<0.06–64	24	<0.03–2	0.5
<i>Staphylococcus aureus</i>	2	0.5	0.5	>128	>128	0.5–1	0.7
<i>Escherichia coli</i>	3	>1024	>1024	64–>64	>64	16–64	48
<i>Shigella isangi</i>	1	4	4	128	128	2	2
<i>Klebsiella pneumoniae</i>	8	1024–>1024	>1024	8–>64	>64	4–>64	>64
<i>Acinetobacter baumann</i>	7	1024–>1024	>1024	2–32	21	1–32	11
<i>Pseudomonas aeruginosa</i>	1	256	256	>128	>128	>64	>64
<i>E. coli</i> ATCC 25922		4	4	64	64	2	2
<i>S. aureus</i> ATCC 25923		<0.06	<0.06	>64	>64	0.06	0.06
<i>P. aeruginosa</i> ATCC 27853		512	512	>64	>64	32	32

^a n, number of strains.

^b MIC₉₀, minimal inhibitory concentration that inhibits 90% of the strains.

Table 3
Minimal inhibitory concentrations (MIC) in mg/l of the metal complexes of sulbactam and their combinations with ampicillin against 42 clinical and three control strains^a

Microorganisms	Species	n	Cu–Sulb		Amp+Cu–Sulb		Fe–Sulb		Amp+Fe–Sulb		Ni–Sulb		Amp+Ni–Sulb	
			MIC range	MIC ₉₀	MIC range	MIC ₉₀	MIC range	MIC ₉₀	MIC range	MIC ₉₀	MIC range	MIC ₉₀	MIC range	MIC ₉₀
<i>E. faecalis</i>		7	>64	>64	2–8	5.6	>64	>64	1–2	1.7	16–64	>64	2–4	3.2
<i>M. catarrhalis</i>		13	<0.06–>64	0.03–4	3	<0.06–>64	42	<0.03–64	1.5	<0.06–>64	64	<0.03–1	0.7	0.7
<i>S. aureus</i>		2	>64	>64	1	>64	>64	>64	2–4	3.2	>64	>64	1–2	1.8
<i>E. coli</i>		3	>64	>64	>64	>64	>64	>64	32–64	57	>64	>64	32–>64	>64
<i>S. isangi</i>		1	>64	>64	>64	>64	>64	>64	64	64	128	128	8	8
<i>K. pneumoniae</i>		8	>64	>64	>64	>64	>64	>64	32–>64	>64	64–>64	>64	16–>64	>64
<i>A. baumann</i>		7	>64	>64	>64	>64	>64	>64	4–32	24	4–64	28	4–64	52
<i>P. aeruginosa</i>		1	>64	>64	>64	>64	>64	>64	>64	64	64	64	64	64
<i>E. coli</i> ATCC 25922		1	>64	>64	4	>64	4	>64	32	16	16	16	16	4
<i>S. aureus</i> ATCC 25923		1	>64	>64	1	>64	1	>64	0.12	0.12	>64	>64	2	2
<i>P. aeruginosa</i> ATCC 27853		1	>64	>64	>64	>64	>64	>64	>64	>64	>64	>64	>64	64

^a Amp, ampicillin; Sulb, sulbactam; n, number of strains; MIC₉₀, minimal inhibitory concentration that inhibits 90% of the strains.

because of some challenge for antimicrobial treatment e.g. *Moraxella catarrhalis* producing β -lactamase (Bla) or *Escherichia coli* and *Klebsiella pneumoniae*, elaborating extended broad-spectrum β -lactamase (EsBla).

4.2. Media

Mueller–Hinton agar (MHA) (purchased from the National Center for Infections and Parasitic Diseases, Bulgaria) and MHA + 5% sheep blood were used.

4.3. Method

In vitro susceptibility determination has been performed by twofold serial dilution method in MHA [12]. Sulbactam (Sulb) and its metal complexes were combined with ampicillin (Amp) in ratio 1:1. The MIC₉₀ value was calculated using a graphical method.

5. Results and discussion

Table 1 shows the data of the elemental analysis of the compounds obtained, serving as a basis for the determination of their empirical formulae and the results of the Karl Fisher analysis and of the flame photometry analysis.

The mode of bonding of the ligand to Cu(II), Ni(II), and Fe(III) ions was elucidated by recording the IR spectra of the complexes as compared with those of the free ligand.

The bands appearing in the IR spectrum of sulbactam sodium salt are at 1780, 1599, 1400, 1302 and 1124 cm^{-1} . The band at 1780 cm^{-1} can be attributed to the stretching vibrations of the carbonyl group (β -lactam), the two bands at 1599 and 1400 cm^{-1} can be related to the stretching vibrations of the carboxilate ion and the two bands at 1302 and 1124 cm^{-1} correspond to the sulfo-group. In all the complexes the $\nu_{\text{C=O}}$ band was shifted from 1780 to 1790 cm^{-1} .

A broad band, characteristic for ν_{OH} of coordinated water was observed in the region 3500–3200 cm^{-1} in the spectra of all the complexes.

The band at 1599 cm^{-1} assigned as ν_{COO^-} is observed at 1668–1614 cm^{-1} in the copper complex, at 1626 cm^{-1} in the nickel complex, and at 1634 cm^{-1} in the iron complex.

The ν_{SO_2} band at 1302 and 1124 cm^{-1} shifted to 1315 and 1118 cm^{-1} in copper and nickel complexes and to 1317 and 1120 cm^{-1} in the iron complex.

Metal ion coordination with sulbactam by means of oxygen atom of the COO^- group was confirmed by ¹H NMR spectroscopy.

The proton spectrum of the starting sulbactam sodium salt was as follows: 5.05 (dd, 1H, $J_1 = 5$ Hz,

$J_2 = 2$ Hz, 5-H); 4.25 (s, 1H, 3-H); 3.60 (d, 1H, $J = 5$ Hz, 6 α -H); 3.50 (d, 1H, $J = 2$ Hz, 6 β -H); 1.60 (s, 3H, CH_3); 1.40 (s, 3H, CH_3) (see Fig. 1 for the numbering of C-atoms).

The proton spectra of the metal complexes of sulbactam were as follows: 5.05 (m, 1H, 5-H); 3.80 (s, 1H, 3-H); 3.70 (m, 1H, 6 α -H); 3.50 (m, 1H, 6 β -H); 1.60 (s, 3H, CH_3); 1.40 (s, 3H, CH_3).

In all complexes of sulbactam a change in the signal of the H at C-3 which shifted from 4.25 to 3.80 ppm on complexation was observed. This can be taken as evidence for the participation of the COO^- group in coordination.

Table 2 shows the results of susceptibility determination for ampicillin, sulbactam and ampicillin + sulbactam combination. The higher minimal inhibitory concentrations (MICs) of ampicillin are results of Bla production. Sulbactam possesses poor antibacterial activity and only the strains of *Acinetobacter* are inhibited (natural susceptibility). The effect of Amp + Sulg combining is more pronounced in *M. catarrhalis* (plasmid-determined Bla).

The results of the susceptibility determination for metal complexes of sulbactam and their combinations with ampicillin are summarized in Table 3. It seems that the new complexes exhibit similar activity to that of sulbactam, usually slightly lower. The activity of Amp + Fe-Sulg is more near the activity of Amp + Sulg against *Staphylococcus aureus* ATCC 25923 and especially the activity against *Enterococcus faecalis* clinical strains.

The susceptibility to the combination Amp + Ni-Sulg is also similar to that of Amp + Sulg for the control strains *E. coli* ATCC 25922 and *Pseudomonas aeruginosa* ATCC 27853, as well as for the most of clinical strains e.g. *M. catarrhalis*.

In conclusion several new metal complexes of sulbactam have been synthesized and their combinations with ampicillin were found to exhibit biological activity that is slightly lower than that of the parent combination.

References

- [1] A.A. Medeiros, Clin. Infect. Dis. 24 (1997) S19.
- [2] H.C. Neu, Science 257 (1992) 1064.
- [3] A.H. Firsov, M. Ruble, D. Gilbert, D. Savarino, B. Manzano, A.A. Medeiros, S.H. Zinner, Antimicrob. Agents Chemother. 41 (1997) 7.
- [4] E. Keuleyan, B. Vassileva, Problems of Infectious and Parasitic Diseases, NCIPD, Sofia, 1993, p. 17.
- [5] P.D. Lister, A.M. Prevan, C.C. Sanders, Antimicrob. Agents Chemother. 41 (1997) 721.
- [6] K. Manncke, M. Springsklee, W.R. Heizmann, H.G. Sonntag, Int. J. Antimicrob. Agents 6 (1996) S47.
- [7] A.R. English, J.A. Retsema, A.E. Girard, J.E. Lynch, W.E. Barth, Antimicrob. Agents Chemother. 14 (1978) 414.
- [8] Z.H. Chohan, Chem. Pharm. Bull. 39 (1991) 1578.
- [9] G. Mukherjee, T. Ghosh, J. Inorg. Biochem. 59 (1995) 827.
- [10] L. Pellerito, F. Maggio, T. Fiore, A. Pellerito, Appl. Organomet. Chem. 10 (1996) 393.
- [11] S. Deguchi, Y. Shibahara, M.T. Mooney, K. Yamamoto, T. Tada, M. Fujioka, Y. Okamoto, T. Yasuda, S. Suzuki, J. Inorg. Biochem. 65 (1997) 191.
- [12] National Committee for Clinical Laboratory Standards, NCCLS document M100-S6/M7-A3, 3rd ed., 1995, Villanova, PA, USA.